iGuzzini

Last information update: August 2025

Product configuration: QJ39

QJ39: Minimal 15 cells - Flood beam - LED

Product code

QJ39: Minimal 15 cells - Flood beam - LED

Technical description

Linear miniaturised recessed luminaire with 15 optical elements for LED lamps - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient luminous flux and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, minimal (frameless) version for mounting flush with the ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Supplied with a dimmable DALI power supply unit connected to the luminaire.

Installation

Colour

Mounting

Wiring

Notes

The luminaire is recessed in the specific adapter (QJ93) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up.

Weight (Kg)

0.59

~	6	
H	268	

2] amananananan]2

__/ / 26x273 wall recessed|ceiling recessed

* Colours on request

On the power supply unit with terminal board included.

White (01) | Black (04) | Gold (14)* | Burnished chrome (E6)*

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Technical data			
Im system:	2698	Colour temperature [K]:	4000
W system:	33.8	MacAdam Step:	2
Im source:	3250	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W source:	30	Voltage [Vin]:	230
Luminous efficiency (Im/W,	79.8	Lamp code:	LED
real value):		Number of lamps for optical	1
Im in emergency mode:	-	assembly:	
	0	ZVEI Code:	LED
an angle of 90° [Lm]:		Number of optical	1
Light Output Ratio (L.O.R.)	83	assemblies:	
[%]:		Control:	DALI-2
Beam angle [°]:	43°		
CRI (minimum):	90		

Polar

Imax=5540 cd CIE	Lux			
90° nL 0.83 180° 90° UGR <10-100-100-100-83	h	d	Em	Emax
	2	1.5	1128	1375
UTE 0.83A+0.00T F*1=999	4	3.1	282	344
6000 F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	6	4.6	125	<mark>1</mark> 53
α=42°	65° mq @65° 8	6.1	70	86

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

QC	A		1.15	2000	1000	500		<=300		
	в		1.50		2000	1000	750	500	<=300	
	С		1.85			2000		1000	500	<-300
				_			_ / _	/ /		
85°										- 8
			-							
75°		1	-							
		/					\land			
65°										2
									$\langle -$	a
55°		1								h
				+						\sim
45° 1	0 ²		2	3 4 5	6 8 1	0 ³	2 3	4 5 6	8 10 ⁴	cd/m ²

UGR diagram

Rifle	et :										
ce il/c		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
	work pl.				0.20	0.20	0.20	0.20			
Room dim		222023	10000	viewed		0.000	10-11-12-12-12-12-12-12-12-12-12-12-12-12-	0.000	viewed		0.000
x	У		0	crosswis	e				endwise	2	
2H	2H	7.8	8.3	8.1	8.5	8.7	7.8	8.3	8.1	8.5	8.7
	ЗН	7.7	8.1	0.8	8.4	8.6	7.7	8.1	8.0	8.4	8.6
	4H	7.6	0.8	7.9	8.3	6.8	7.6	0.8	7.9	8.3	8.6
	6H	7.5	7.9	7.9	8.2	8.5	7.5	7.9	7.9	8.2	8.5
	BH	7.5	7.8	7.8	8.2	8.5	7.5	7.8	7.8	8.2	8.5
	12H	7.5	7.8	7.8	8.1	8.5	7.4	7.8	7.8	8.1	8.5
4H	2H	7.6	0.8	7.9	8.3	6.8	7.6	8.0	7.9	8.3	8.6
	ЗH	7.4	7.8	7.8	8.1	8.5	7.4	7.8	7.8	8.1	8.5
	4H	7.3	7.7	7.7	0.8	8.4	7.3	7.7	7.7	0.8	8.4
	6H	7.3	7.5	7.7	7.9	8.3	7.3	7.5	7.7	7.9	8.3
	HS	7.2	7.5	7.7	7.9	8.3	7.2	7.5	7.7	7.9	8.3
	12H	7.2	7.4	7.6	7.8	8.3	7.2	7.4	7.6	7.8	8.3
вн	4H	7.2	7.5	7.7	7.9	8.3	7.2	7.5	7.7	7.9	8.3
	6H	7.1	7.3	7.6	7.8	8.3	7.1	7.3	7.6	7.8	8.3
	BH	7.1	7.3	7.6	7.7	8.2	7.1	7.3	7.6	7.7	8.2
	12H	7.0	7.2	7.5	7.7	8.2	7.0	7.2	7.5	7.7	8.2
12H	4H	7.2	7.4	7.6	7.8	8.3	7.2	7.4	7.6	7.8	8.3
	6H	7.1	7.2	7.6	7.7	8.2	7.1	7.3	7.6	7.7	8.2
	8H	7.0	7.2	7.5	7.7	8.2	7.0	7.2	7.5	7.7	8.2
Varia	tions wi	th the ol	oserverp	osition	at spacir	ng:	100				
S =	1.0H		7	0 / -14	1.5	7.0 / -14.5					
	1.5H		9	8 / -14	.7	9.8 / -14.7					