
iGuzzini

Letzte Aktualisierung der Informationen: September 2020

Produktkonfiguration: 4300+L275

4300: Gerät mit Alu-Reflektor und induktiver Verkabelung 150 W A65/250 W QT32

Produktcode

4300: Gerät mit Alu-Reflektor und induktiver Verkabelung 150 W A65/250 W QT32 Warnung! Code eingestellt

Beschreibung

Hängeleuchte für den Innenbereich, geeignet für eine Bestückung mit Halogenlampen QT32 für 250W und A65 für 150W. Komponentenkasten aus druckgegossenem Aluminium, bestehend aus Kopf und Verschlußflansch, komplett mit Kühlrippen, die mittels 2 absturzgesicherten Stahlkabel befestigt sind, um die Wartungsarbeiten zu erleichtern. Ein Halterungselement für die Lampenfassung aus Aluminium ist mittels 3 M4-Schrauben fest mit dem Flansch verbunden. Der Reflektor aus 99,85% reinstem Aluminium ist mit Innensechskantschrauben an den Flansch befestigt, auf Silikondichtung. Hängeelement aus Metall. Die Dichtigkeit wird von einer Kabeldurchführungstülle PG11 aus vernickeltem Messing gewährleistet, die am Aufhängeelement angebracht ist.

Installation

An die Decke durch mittels Fischer-Dübel befestigte Verankerungsplatte und Stahl-Hängekabel mit Schnellbefestigungssystem. Das Befestigungssystem wird auf Wunsch als Zubehör geliefert, zusammen mit den beiden Hängebefestigungsversionen Farbe 04 (Spiralkabel Best.Nr. 4449 oder glatt Best.Nr. 4447).

Farben

Grau/Aluminium (78)

Montage

Pendelleuchte

Verkabelung

Direkter Anschluß an die 230V Netzspannung mittels in der Verankerungsplatte untergebrachten Klemmenanschluß.

Anmekungen

Als Zubehör sind ferner lieferbar: Schutzschirm komplett mit Silikondichtung für IP65 Best.Nr. 4442, Schutzgitter mit konzentrischen Ringen Best.Nr. 4444.

Gemäß der Normen EN60598-1 u. Sondernormen

Tech	nische	Date
CCII	11130110	Dutci

Im System:	1418.2	CRI:	100
W System:	105	Farbtemperatur [K]:	2800
Im Lichtquelle:	1900	Verlustleistung	0
W Lichtquelle:	105	Versorgungseinheit [W]:	
Lichtausbeute (Im/W,	13.5	Eingangsspannung [V]:	230
Systemwert):		Lampencode:	L275
Im im Notlichtbetrieb:	-	Fassungstype:	E27
abgegebener Lichtstrom bei/ über einem Winkel von 90°	0	Anzahl Lampen in Leuchtengehäuse:	1
[lm]:		ZVEI-Code:	HALO ES
Leuchtenbetriebswirkungsgrad (L.O.R.) [%]:	d 75	Anzahl Leuchtengehäuse:	1
Abstrahlwinkel [°]:	84°		

Polardiagramm

	CIE	Lux			
90° / 180° / 90°	nL 0.75 67-93-99-100-75	h	d	Em	Emax
	UGR 15.7-15.6 DIN A.51 UTE	1	1.8	542	840
	0.75C+0.00T F"1=668	2	3.6	136	210
	F"1+F"2=934 F"1+F"2+F"3=991 CIBSE	3	5.4	60	93
	LG3 L<1500 cd/m ² at 65°	4	7.2	34	53

Wirkungsgrad

R	77	75	73	71	55	53	33	00	DRR
K0.8	56	49	45	42	49	45	44	40	54
1.0	61	55	51	47	54	50	50	46	61
1.5	67	63	59	56	62	58	58	54	72
2.0	71	67	65	62	66	64	63	60	80
2.5	73	70	68	66	69	67	66	63	84
3.0	74	72	70	68	71	69	68	65	87
4.0	76	74	73	71	73	71	70	67	90
5.0	77	75	74	73	74	73	71	69	92

Söllner-Diagramm

QC	A	G	1.15	20	00		1000	500			<=3	00		
	В		1.50			- 2	2000	1000)	750	50	0	<=300)
	С		1.85		_			2000	i		100	00	500	<=300
85°			1		-		7			H	\prod			8 6
75°				+	+				H	₩				4
65°				+	+									2
55°				+	+				1					a h
45° 10	D ²		2	3	4 5	5 6	8	10 ³	2	3	4 5	6	8 104	cd/m²
8	C0-18	0 -				_								

Corre	ected UC	GR values	s (at 1901	Im bar	e lamp lu	eu o ni mu	flux)				
Rifled	ot.:										
ce il/c	av	0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls		0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work	pl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.21
Roor	n dim			viewed					viewed		
X	Ÿ	γ crosswise							endwise		
2H	2H	15.0	15.9	15.3	16.1	16.4	15.0	15.9	15.3	16.1	16.
	ЗН	15.2	16.1	15.6	16.3	16.6	15.1	15.9	15.4	16.1	16.
	4H	15.3	16.1	15.7	16.4	16.7	15.1	15.8	15.4	16.1	16.
	δH	15.3	16.0	15.7	16.4	16.7	15.0	15.7	15.4	16.0	16.
	8H	15.3	16.0	15.7	16.3	16.7	15.0	15.6	15.4	16.0	16.
	12 H	15.3	15.9	15.7	16.3	16.6	15.0	15.6	15.3	15.9	16.
4H	2H	15.1	15.8	15.4	16.1	16.4	15.3	16.1	15.7	16.4	16.
	ЗН	15.5	16.1	15.8	16.4	16.8	15.5	16.2	15.9	16.5	16.
	4H	15.6	16.1	16.0	16.5	16.9	15.6	16.1	16.0	16.5	16.
	θН	15.7	16.1	16.1	16.5	17.0	15.6	16.1	16.0	16.5	16.
	8H	15.7	16.1	16.1	16.5	17.0	15.6	16.0	16.0	16.4	16.
	12 H	15.6	16.0	16.1	16.5	16.9	15.5	15.9	16.0	16.4	16.
8Н	4H	15.6	16.0	16.0	16.4	16.9	15.7	16.1	16.1	16.5	17.
	δН	15.7	16.1	16.2	16.5	17.0	15.7	16.1	16.2	16.5	17.
	8H	15.7	16.0	16.2	16.5	17.0	15.7	16.0	16.2	16.5	17.
	12 H	15.7	16.0	16.2	16.4	17.0	15.7	16.0	16.2	16.4	17.
12H	4H	15.5	15.9	16.0	16.4	16.8	15.6	16.0	16.1	16.5	16.
	δН	15.7	16.0	16.1	16.4	16.9	15.7	16.0	16.2	16.5	17.
	8H	15.7	16.0	16.2	16.4	17.0	15.7	16.0	16.2	16.4	17.
Varia	tions wi	th the ot	server p	osition a	at spacin	ıg:					
5 =	1.0 H		1	.1 / -1.	4			1	.1 / -1.	4	
	1.5H		1	.7 / -2	5		1.7 / -2.5				
	2.0H		3	2 / -3.	3			3	.2 / -3.	3	