Design iGuzzini iGuzzini

Last information update: June 2025

Product configuration: Q790

Q790: Minimal 5 cells - Flood beam - Tunable White - LED

Q790: Minimal 5 cells - Flood beam - Tunable White - LED

Technical description

Minimal linear 5 optic element recessed miniaturised luminaire. Using LED lamps with a high colour rendering index and a different colour temperature allows dynamic light modulation to be obtained. The variation is achieved by mixing an emission of 3 x 2700K LEDs and 2 x 5700K LEDs. Despite the disparity of lamps that use extreme channels - 2700K and 5700K - the intensity of the flux emitted remains the same. Moreover, even when products of different sizes are used, the colour temperature remains constant and uniform. Main body with die-cast aluminium radiant surface; frameless version for mounting flush with ceiling. Metallised, thermoplastic, high definition Opti Beam reflectors, integrated in a set-back position in the anti-glare screen. The product is designed to be used together with code 6170 to obtain a solution suitable for small to medium systems that can be programmed with a DALI protocol via a simple and intuitive user touch-panel. Other management systems are also available with a separate code for larger systems that require the intervention of a specialised technician to programme them: the MH97 + MH93 + MI02 group offers a DALI / KNX programmable solution, and the MH97 + MH93 + M618 group allows the system management to be extended to remote devices like tablet and smartphones too.

Installation

Recessed with steel wire springs on the specific adapter (included) which allows flush-mounting with the ceiling. Adapter fixed to false ceiling (compatible thicknesses of 12.5 / 15 / 20 mm) with screws; subsequent filling and smoothing operations; insertion of luminaire body and aesthetic end finishing. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up. Preparation hole 28 x 93.

Weight (Kg)

0.5

Mounting

wall recessed|ceiling recessed

Wiring

DALI control gear units included. Different management systems are available with a separate code. For technical details, properties and connection procedures see the instruction sheet.

Notes

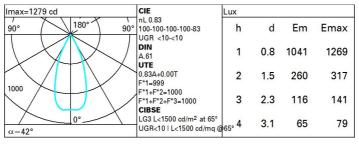
The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Complies with EN60598-1 and pertinent regulations

DALI

Technical data

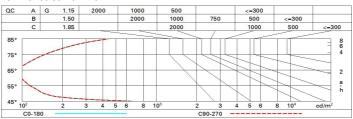
Light Output Ratio (L.O.R.) 83



Im system:	623	Beam angle [°]:	42°
W system:	12.8	Colour temperature [K]:	Tunable white 2700 - 5700
Im source:	750	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W source:	8.5	Lamp code:	LED
Luminous efficiency (lm/W, real value):	48.6	Number of lamps for optical assembly:	1
Im in emergency mode:	-	ZVEI Code:	LED
Total light flux at or above an angle of 90° [l m]:	0	Number of optical assemblies:	1

Control:

[%]:


Polar

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	80	77	76	79	77	76	74	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	87	85	83	100

Luminance curve limit

Corre	cted UC	R value:	s (at 750	Im bare	lamp lu	mino us f	lux)					
Rifled	et.:											
ceil/cav walls work pl. Room dim x y		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30	
		0.50 0.20	0.30 0.20	0.50 0.20	0.30	0.30	0.50 0.20	0.30 0.20	0.50	0.30	0.30	
											0.20	
		viewed crosswise					viewed endwise					
	ЗН	6.4	6.9	6.7	7.1	7.4	6.4	6.9	6.7	7.1	7.	
	4H	6.4	6.8	6.7	7.0	7.3	6.4	8.6	6.7	7.0	73	
	бН	6.3	6.7	6.6	7.0	7.3	6.3	6.6	6.6	7.0	7.	
	HS	6.2	6.6	6.6	6.9	7.3	6.2	6.6	6.6	6.9	7.	
	12H	6.2	6.6	6.6	6.9	7.2	6.2	6.5	6.6	6.9	7.	
4H	2H	6.4	6.8	6.7	7.0	7.3	6.4	6.8	6.7	7.0	7.	
	ЗН	6.2	6.5	6.6	6.9	7.2	6.2	6.5	6.6	6.9	7.	
	4H	6.1	6.4	6.5	6.8	7.2	6.1	6.4	6.5	6.8	7.	
	6H	6.0	6.3	6.5	6.7	7.1	6.0	6.3	6.4	6.7	7.	
	HS	6.0	6.2	6.4	6.6	7.1	6.0	6.2	6.4	6.6	7.	
	12H	5.9	6.2	6.4	6.6	7.1	5.9	6.2	6.4	6.6	7.	
вн	4H	6.0	6.2	6.4	6.6	7.1	6.0	6.2	6.4	6.6	7.	
	6H	5.9	6.1	6.4	6.5	7.0	5.9	6.1	6.4	6.5	7.	
	HS	5.8	6.0	6.3	6.5	7.0	5.8	6.0	6.3	6.5	7.	
	12H	5.8	6.0	6.3	6.4	7.0	5.8	5.9	6.3	6.4	6.	
12H	4H	5.9	6.2	6.4	6.6	7.0	5.9	6.2	6.4	6.6	7.	
	6H	5.8	6.0	6.3	6.5	7.0	5.9	6.0	6.3	6.5	7.	
	HS	5.8	5.9	6.3	6.4	6.9	5.8	6.0	6.3	6.4	7.	
Varia	tions wi	th the ol	oserverp	noitieo	at spacir	ng:						
S =	1.0H	7.0 / -14.5					7.0 / -14.5					
	1.5H	9.8 / -1 4.7					9.8 / -14.7					
	2.0H	11.8 / -14.8							1.8 / -14			