iGuzzini

Last information update: August 2025

Product configuration: QJ25

QJ25: Minimal 9 cells - Wide Flood beam - LED

Product code

QJ25: Minimal 9 cells - Wide Flood beam - LED

Technical description

Square miniaturised recessed luminaire with 9 optical elements for LED lamps - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient luminous flux and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, minimal (frameless) version for mounting flush with the ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Supplied with a dimmable DALI power supply unit connected to the luminaire.

Installation

Colour

The luminaire is recessed in the specific adapter (QJ91) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up

Weight (Kg)

0.27

White (01) | Black (04) | Gold (14)* | Burnished chrome (E6)*

* Colours on request

Mounting wall recessed|ceiling recessed

Wiring

On the power supply unit with terminal board included.

Notes

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Technical data			
Im system:	1121	Colour temperature [K]:	2700
W system:	17.7	MacAdam Step:	2
Im source:	1350	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)
W source:	15	Voltage [Vin]:	230
Luminous efficiency (Im/W,	63.3	Lamp code:	LED
real value):		Number of lamps for optical	1
Im in emergency mode:	-	assembly:	
	0	ZVEI Code:	LED
an angle of 90° [Lm]:		Number of optical	1
Light Output Ratio (L.O.R.)	83	assemblies:	
[%]:		Control:	DALI-2
Beam angle [°]:	58°		
CRI (minimum):	90		

Polar

		Lux			
90°	nL 0.83 100-100-100-100-83	h	d	Em	Emax
	UGR 15.6-15.6 DIN A.61	1	1.1	1135	1416
	UTE 0.83A+0.00T F"1=996	2	2.2	284	354
	F"1+F"2=1000 F"1+F"2+F"3=1000 CIBSE	3	3.3	126	157
	LG3 L<1500 cd/m ² at 65° UGR<16 L<1500 cd/mq @	_{65°} 4	4.4	71	89

Utilisation	factors
Ullisation	acions

R	77	75	73	71	55	53	33	00	DRR
K0.8	75	71	68	66	70	68	68	65	78
1.0	78	75	72	70	74	72	71	69	83
1.5	82	79	77	76	78	77	76	73	89
2.0	85	83	81	80	82	80	79	77	93
2.5	86	85	84	83	84	83	82	79	96
3.0	87	86	85	85	85	84	83	81	98
4.0	88	87	87	86	86	86	84	82	99
5.0	89	88	88	88	87	86	85	83	100

Luminance curve limit

QC	Α	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<-300	
	C		1.85			2000		1000	500	<-300
85°				-					TI	8
75°		_				$\left \left\{ \left\{ \right. \right\} \right.$	HH			4
65°	-					\rightarrow	\square			2
55°										a, h
45° 1	0 ²		2	3 4 5	568	10 ³	2 3	4 5 6	8 10 ⁴	cd/m ²
	C0-180						C90-270 -			

UGR diagram

Rifle	et :										
ce il/c		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls	3	0.50	0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work	pl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	n dim	8351000		viewed			0.0000000		viewed		
x	У		c	rosswis	e				endwise		
2H	2H	16.2	16.8	16.4	17.0	17.2	16.2	16.8	16.4	17.0	17.2
	ЗH	16.0	16.6	16.3	16.8	17.1	16.0	16.6	16.3	16.8	17.
	4H	16.0	16.5	16.3	16.7	17.0	16.0	16.5	16.3	16.7	17.0
	6H	15.9	16.3	16.2	16.6	17.0	15.9	16.3	16.2	16.6	17.0
	BH	15.8	16.3	16.2	16.6	16.9	15.8	16.3	16.2	16.6	16.9
	12H	15.8	16.2	16.2	16.6	16.9	<mark>15.</mark> 8	16.2	16.2	16.6	16.9
4H	2H	16.0	16.5	16.3	16.7	17.0	16.0	16.5	16.3	16.7	17.
	ЗH	15.8	16.2	16.2	16.6	16.9	15.8	16.2	16.2	16.6	16.9
	4H	15.7	16.1	16.1	16.4	16.8	15.7	16.1	16.1	16.4	16.8
	6H	15.6	15.9	16.1	16.3	16.8	15.6	15.9	16.1	16.3	16.8
	BH	15.6	15.9	16.0	16.3	16.7	15.6	15.9	16.0	16.3	16.1
	12H	15.5	15.8	16.0	16.2	16.7	15.5	15.8	16.0	16.2	16.
вн	4H	15.6	15.9	16.0	16.3	16.7	15.6	15.9	16.0	16.3	16.
	6H	15.5	15.7	16.0	16.2	16.7	15.5	15.7	16.0	16.2	16.
	BH	15.4	15.6	15.9	16.1	16.6	15.4	15.6	15.9	16.1	16.0
	12H	15.4	15.6	15.9	16.0	16.6	15.4	15.6	15.9	16.0	16.0
12H	4H	15.5	15.8	16.0	16.2	16.7	15.5	15.8	16.0	16.2	16.
	6H	15.4	15.6	15.9	16.1	16.6	15.4	15.6	15.9	16.1	16.0
	H8	15.4	15.6	15.9	16.0	16.6	15.4	15.6	15.9	16.0	16.0
Varia	tions wi	th the ot	oserver p	osition	at spacin	g:					
S =	1.0H		6.	5 / -24	.9	6.5 / -24.9					
	1.5H		4 / -25	.6		9.	4 / -25	.6			