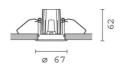
Design iGuzzini

Letzte Aktualisierung der Informationen: April 2024

iGuzzini

Produktkonfiguration: P318

P318: Runde, starre Einbauleuchte- LED -Flood


P318: Runde, starre Einbauleuchte- LED -Flood

Beschreibung

Runde Einbauleuchte mit Falzrahmen. Starre Version. Zurückgesetzte Position des LED-Moduls zur verminderten Direktblendung . Der Hauptkorpus aus Aluminiumdruckguss weist eine strahlende Oberfläche auf, die eine optimale Wärmeableitung garantiert. Hochleistungsreflektor aus Thermoplast mit Flood-Optik (40°). Struktur mit äußerem Falzrahmen aus Aluminiumdruckguss, mit weißer Lackierung überzogen. Ring im Inneren aus Thermoplast, erhältlich in verschiedenen lackierten oder metallbeschichteten Ausführungen. Schutzglas inbegriffen. Einfacher und schneller Zusammenbau ohne Werkzeug. LED 3000K mit hohem Farbwiedergabe-Index. Versorgungseinheit mit getrenntem Code verfügbar.

Installation

Zum Einbau mittels Stahldraht-Federn mit Herabfallschutzsystem in abgehängte Decken mit einer Mindestdicke 1 mm -Einbauöffnung Ø 59 mm

ø 59

Farben

Weiß (01) | Schwarz/Schwarz (43) | Weiß/Schwarz (47) | Weiß/Gold (41)* | Weiß/Verchromt (E4)* | White / chrome burnished (E7)* | weiß / Gold Satiniert (E9)*

Gewicht (Kg)

* Farben auf Anfrage

Montage
Wandeinbauleuchte|Deckeneinbauleuchte

Verkabelung

Konstantstromversorgungseinheiten mit getrenntem Code verfügbar. ON-OFF / dimmbar 1-10V / dimmbar DALI / dimmbar mit Phasenanschnitt - die Einbauleuchte wird mit Kabel und Schnellanschluss geliefert, die an den mitgelieferten Steckverbinder an der Versorgungseinheit anzuschließen sind.

Anmekungen

Es ist eine breite Palette an dekorativem und Blendschutz-Zubehör erhältlich.

Gemäß der Normen EN60598-1 u. Sondernormen

IP20

Technische Daten

on the visible part of the product once installed

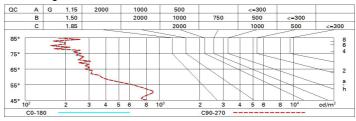
recinisone baten			
Im System:	648	CRI (minimum):	90
W System:	6.8	Farbtemperatur [K]:	3000
Im Lichtquelle:	800	MacAdam Step:	2
W Lichtquelle:	6.8	Lebensdauer LED 1:	> 50,000h - L90 - B10 (Ta 25°C)
Lichtausbeute (lm/W,	95.3	Lampencode:	LED
Systemwert):		Anzahl Lampen in	1
Im im Notlichtbetrieb:	-	Leuchtengehäuse:	
abgegebener Lichtstrom bei/	0	ZVEI-Code:	LED
über einem Winkel von 90°		Anzahl Leuchtengehäuse:	1
[lm]:		LED Strom [mA]:	200

Leuchtenbetriebswirkungsgrad 81

38°

(L.O.R.) [%]:

Abstrahlwinkel [°]:


Polardiagramm

lmax=1671 cd	CIE	Lux			
90° 180° 90°	nL 0.81 100-100-100-100-81	h	d	Em	Emax
	UGR <10-<10 DIN A.61	2	1.4	332	417
	UTE 0.81A+0.00T F"1=997	4	2.8	83	104
1500	F"1+F"2=999 F"1+F"2+F"3=1000 CIBSE	6	4.1	37	46
α=38°	LG3 L<1500 cd/m ² at 65° UGR<10 L<1500 cd/mq @	_{65°} 8	5.5	21	26

Wirkungsgrad

R	77	75	73	71	55	53	33	00	DRR
K0.8	73	69	67	65	69	66	66	63	78
1.0	76	73	71	69	72	70	70	67	83
1.5	80	78	76	74	77	75	74	72	89
2.0	83	81	79	78	80	78	77	75	93
2.5	84	83	82	81	82	81	80	78	96
3.0	85	84	83	83	83	82	81	79	98
4.0	86	85	85	84	84	84	82	80	99
5.0	87	86	86	85	85	84	83	81	100

Söllner-Diagramm

Corre	ected UC	R value:	oos ta) e	Im bare	lamp lu	mino us f	lux)						
Rifled	ct.:												
ceil/cav walls work pl.		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30		
		0.50 0.20	0.30	0.50 0.20	0.30	0.30 0.20	0.50 0.20	0.30	0.50	0.30	0.30		
								0.20	0.20	0.20	0.20		
Roon	n dim	viewed						viewed					
X	У	crosswise					endwise						
2H	2H	5.9	6.4	6.1	6.6	6.9	5.9	6.4	6.1	6.6	6.9		
	ЗН	5.7	6.2	6.0	6.5	6.8	5.7	6.2	6.0	6.5	6.8		
	4H	5.7	6.1	6.0	6.4	6.7	5.7	6.1	6.0	6.4	6.7		
	бН	5.6	6.0	5.9	6.3	6.7	5.6	6.0	5.9	6.3	6.6		
	нв	5.6	6.0	5.9	6.3	6.6	5.5	6.0	5.9	6.3	6.6		
	12H	5.5	5.9	5.9	6.3	6.6	5.5	5.9	5.9	6.2	6.6		
4H	2H	5.7	6.1	6.0	6.4	6.7	5.7	6.1	6.0	6.4	6.7		
	ЗН	5.5	5.9	5.9	6.3	6.6	5.5	5.9	5.9	6.3	6.6		
	4H	5.4	5.8	5.8	6.2	6.5	5.4	5.8	5.8	6.2	6.5		
	бН	5.4	5.7	5.8	6.1	6.5	5.4	5.7	5.8	6.1	6.5		
	HS	5.3	5.6	5.8	6.0	6.5	5.3	5.6	5.8	6.0	6.4		
	12H	5.3	5.5	5.7	6.0	6.4	5.3	5.5	5.7	5.9	6.		
вн	4H	5.3	5.6	5.8	6.0	6.4	5.3	5.6	5.8	6.0	6.5		
	6H	5.2	5.5	5.7	5.9	6.4	5.2	5.5	5.7	5.9	6.4		
	HS	5.2	5.4	5.7	5.8	6.3	5.2	5.4	5.7	5.8	6.3		
	12H	5.1	5.3	5.6	5.8	6.3	5.1	5.3	5.6	5.8	6.3		
12H	4H	5.3	5.5	5.7	5.9	6.4	5.3	5.5	5.7	6.0	6.4		
	бН	5.2	5.4	5.7	5.8	6.3	5.2	5.4	5.7	5.9	6.3		
	HS	5.1	5.3	5.6	5.8	6.3	5.1	5.3	5.6	5.8	6.3		
Varia	tions wi	th the ol	oserver p	noitieo	at spacir	ng:							
S =	1.0H	6.5 / -11.2					6.5 / -11.2						
	1.5H	9.3 / -12.8					9.3 / -12.8						