Design iGuzzini

iGuzzini

Last information update: January 2025

Product configuration: RN00.01

 $RN00.01: Adjustable\ recessed\ spotlight\ -\ body\ \varnothing 92\ -\ High\ Output\ -\ Medium\ optic\ -\ 27.6W\ 2745lm\ -\ 3000K\ -\ CRI\ 90\ -\ White\ Property and Prop$

692 0 138

Product code

RN00.01: Adjustable recessed spotlight - body Ø92 - High Output - Medium optic - 27.6W 2745lm - 3000K - CRI 90 - White

Technical description

Adjustable spotlight for recessed installation. Load-bearing structure with contact frame and die-cast aluminium, adjustable lighting body. Steel wire fixing springs. Coupling and rotation element in high resistance plastic, designed as a stylish internal cover and a practical recessed mounting. Available rotation: 359° - Adjustability: +60° (external) -20° (internal). Optical assembly featuring an LED lamp with high color rendering index and optimum flux yield performance. The anti-scratch reflector made of P.V.D (Physical Vapour Deposition) aluminium provides optimum performance levels in terms of yield. Supplied with a dimmable DALI power supply unit connected to the luminaire. Possibility of installing a flat frontal accessory - glass cover or an elliptical distribution refractor. Interchangeable spotlights in all openings available as accessories.

Installation

Recessed in false ceiling - fixed via steel wire springs for thicknesses from 1 to 25 mm.

Colour	Weight (Kg)
White (01)	0.69

Mounting

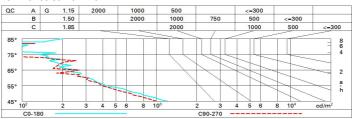
ceiling recessed

Wiring

Direct power line connection via the terminals on the power supply unit included.

Complies with EN60598-1 and pertinent regulations

Technical data Im system: 2745 CRI (minimum): 90 W system: 27.6 Colour temperature [K]: 3000 Im source: 3050 MacAdam Step: Life Time LED 1: > 50,000h - L90 - B10 (Ta 25°C) W source: 24 Luminous efficiency (lm/W, 99.5 Lamp code: LED real value): Number of lamps for optical 1 Im in emergency mode: assembly: Total light flux at or above 0 ZVEI Code: LED an angle of 90° [Lm]: Number of optical Light Output Ratio (L.O.R.) 90 assemblies: [%]: Control: DALI-2 Beam angle [°]: 17°


Polar

	Lux				
100-100-100-90	h	d1	d2	Em	Emax
DIN (A.61	2	0.6	0.6	3225	4124
0.90A+0.00T F"1=999	4	1.2	1.3	806	1031
F"1+F"2=1000 F"1+F"2+F"3=1000	6	1.8	1.9	358	458
1 021 -1500 -1/2 -4 650	₆₅ 8	2.4	2.5	202	258
	UGR <10-<10 DIN A.61 UTE 0.90A+0.00T F*1=999 F*1+F*2=1000 F*1+F*2+F*3=1000 CIBSE	nL 0.90 nL 0.9	0.00	Display	Doc 10.90 Doc 10.90 Doc Doc

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	81	77	74	72	76	74	73	71	78
1.0	85	81	78	76	80	78	77	75	83
1.5	89	86	84	82	85	83	82	80	89
2.0	92	90	88	87	88	87	86	84	93
2.5	93	92	91	90	91	90	89	86	96
3.0	95	94	93	92	92	91	90	88	98
4.0	96	95	94	94	93	93	92	89	99
5.0	96	96	95	95	94	94	92	90	100

Luminance curve limit

Corre	cted UC	R value:	s (at 305	0 lm bar	e lamp li	um ino us	flux)				
Rifled	et.:										
ceil/cav walls work pl.		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
		0.50 0.20	0.30 0.20	0.50 0.20	0.30	0.30	0.50	0.30	0.50	0.30	0.30
							0.20	0.20	0.20	0.20	0.20
Room dim				viewed				viewed			
X	У		(crosswis	e	endwise					
2H	2H	4.8	6.9	5.1	7.2	7.5	4.5	6.7	4.9	7.0	7.3
	ЗН	4.6	6.2	5.0	6.6	6.9	4.4	6.0	4.8	6.3	6.7
	4H	4.6	5.9	4.9	6.2	6.6	4.3	5.7	4.7	6.0	6.3
	бН	4.5	5.6	4.9	5.9	6.2	4.3	5.3	4.7	5.7	6.0
	HS	4.5	5.5	4.9	5.9	6.2	4.2	5.3	4.6	5.6	6.0
	12H	4.4	5.5	4.8	5.8	6.2	4.2	5.2	4.6	5.6	6.0
4H	2H	4.6	5.9	4.9	6.2	6.6	4.3	5.7	4.7	6.0	6.3
	ЗН	4.4	5.5	4.8	5.8	6.2	4.2	5.2	4.6	5.6	6.0
	4H	4.3	5.3	4.7	5.7	6.2	4.0	5.1	4.5	5.5	5.9
	6H	3.9	5.6	4.4	6.1	6.6	3.7	5.4	4.2	5.9	6.3
	HS	3.8	5.7	4.3	6.2	6.7	3.6	5.5	4.1	5.9	6.4
	12H	3.7	5.7	4.2	6.1	6.7	3.5	5.4	4.0	5.9	6.4
вн	4H	3.8	5.7	4.3	6.2	6.7	3.6	5.5	4.1	5.9	6.4
	бН	3.7	5.5	4.2	6.0	6.5	3.4	5.2	4.0	5.7	6.3
	HS	3.7	5.2	4.2	5.7	6.3	3.4	5.0	4.0	5.5	6.0
	12H	3.8	4.8	4.4	5.3	5.8	3.6	4.6	4.1	5.1	5.6
12H	4H	3.7	5.7	4.2	6.1	6.7	3.5	5.4	4.0	5.9	6.4
	6H	3.7	5.2	4.2	5.7	6.3	3.4	5.0	4.0	5.5	6.0
	HS	3.8	4.8	4.4	5.3	5.8	3.6	4.6	4.1	5.1	5.6
Varia	tions wi	th the ol	oserver	osition	at spacir	ng:	-				
S =	1.0H		7	.1 / -17	.3	7.1 / -17.1					
	1.5H	10.0 / -18.8					10.0 / -19.0				