iGuzzini

Last information update: June 2025

Product configuration: QJ00

QJ00: Minimal 4 cells - Flood beam - LED

Product code

QJ00: Minimal 4 cells - Flood beam - LED

Technical description

Square miniaturised recessed luminaire with 4 optical elements for LED lamps - fixed optic. Despite the ultracompact size of the product, the patented technology of the optic system guarantees an efficient luminous flux and a high level of controlled glare visual comfort. Main body with die-cast aluminium radiant surface, minimal (frameless) version for mounting flush with the ceiling. For recessed installation in a false ceiling a specific adapter is required that is available with a separate item code. Metallised, thermoplastic, high definition Opti Beam reflector, integrated in a set-back position in the anti-glare screen. Ballast not included, available with separate code.

Installation

Colour

The luminaire is recessed in the specific adapter (QJ89) by means of a steel wire spring, previously installed on the ceiling that can be 12.5 / 15 / 20 mm thick. A special protective sheath allows finishing operations on the plasterboard to be simplified and speeded up

✓ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	[¢
⊞]1	

6

White (01) | Black (04) | Gold (14)* | Burnished chrome (E6)*

0.07

Weight (Kg)

* Colours on request

Mounting wall recessed|ceiling recessed

Wiring

Constant current ballasts to be ordered separately: ON-OFF - code no. MXF9 (min 1 / max 2); dimmable DALI - code no. BZM4 (min 1 / max 5) - check the instruction sheet for the lengths and compatible cross-sections of the cables to be used.

Notes

The special steel wire spring provided is required to facilitate the eventual extraction of the recessed body once it has been inserted.

Technical data					
Im system:	552	CRI (minimum):	90		
W system:	7.9	Colour temperature [K]:	2700		
Im source:	690	MacAdam Step:	2		
W source:	7.9	Life Time LED 1:	> 50,000h - L80 - B10 (Ta 25°C)		
Luminous efficiency (Im/W,	69.9	Lamp code:	LED		
real value):		Number of lamps for optical	1 1		
Im in emergency mode:	-	assembly:			
Total light flux at or above	0	ZVEI Code:	LED		
an angle of 90° [Lm]:		Number of optical	1		
Light Output Ratio (L.O.R.)	80	assemblies:			
[%]:		LED current [mA]:	700		
Beam angle [°]:	42°				

Polar

Imax=1160 cd CIE Lux nL 0.80 100-100-100-100-80 180° 90 90° h d Em Emax UGR <10-<10 DIN 0.8 924 1155 1 A.61 UTE 0.80A+0.00T 2 1.5 231 289 F"1=997 1000 F"1+F"2=999 F"1+F"2+F"3=1000 3 2.3 103 128 CIBSE LG3 L<1500 cd/m² at 65° 0 UGR<10 | L<1500 cd/mq @65° 4 3.1 58 72 $\alpha = 42^{\circ}$

Utilisation factors

R	77	75	73	71	55	53	33	00	DRR
K0.8	72	69	66	64	68	66	65	63	78
1.0	75	72	70	68	71	69	69	66	83
1.5	79	77	75	73	76	74	73	71	89
2.0	82	80	78	77	79	77	76	74	93
2.5	83	82	81	80	81	80	79	77	96
3.0	84	83	82	82	82	81	80	78	98
4.0	85	84	84	83	83	83	81	79	99
5.0	86	85	85	84	84	83	82	80	100

Luminance curve limit

QC	Α	G	1.15	2000	1000	500		<-300		
	в		1.50		2000	1000	750	500	<=300	
	C		1.85			2000		1000	500	<-300
85°								$\overline{1}$		8
75°						$\left \left\{ \left\{ \right. \right\} \right.$				4
65°				$\left(+ \right)$			$\mathbb{N}^{\mathbb{N}}$			2
55°			_			Ň	\land		\mathbb{N}	a in
45° 1	0 ²		2	3 4	5 6 8 1	0 ³	2 3	4 5 6	8 10 ⁴	cd/m ²
	C0-18) -					C90-270 -			

UGR diagram

Rifle	ct ·										
ceil/cav		0.70	0.70	0.50	0.50	0.30	0.70	0.70	0.50	0.50	0.30
walls			0.30	0.50	0.30	0.30	0.50	0.30	0.50	0.30	0.30
work	pl.	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Roor	n dim	8323600		viewed			10.2314.035		viewed		
x	У		0	crosswis	e				endwise		
2H	2H	7.6	8.2	7.9	8.5	8.7	7.6	8.2	7.9	8.5	8.7
	3H	7.5	0.8	7.8	8.3	8.6	7.5	8.0	7.8	8.3	8.8
	4H	7.5	7.9	7.8	8.2	8.5	7.4	7.9	7.8	8.2	8.5
	бH	7.4	7.8	7.7	8.2	8.5	7.4	7.8	7.7	8.1	8.5
	BH	7.4	7.8	7.7	8.1	8.5	7.3	7.8	7.7	8.1	8.4
	12H	7.4	7.8	7.7	8.1	8.5	7.3	7.7	7.7	0.8	8.4
4H	2H	7.4	7.9	7.8	8.2	8.5	7.5	7.9	7.8	8.2	8.5
	ЗH	7.3	7.7	7.7	8.1	8.4	7.3	7.7	7.7	8.1	8.4
	4H	7.2	7.6	7.6	0.8	8.3	7.2	7.6	7.6	0.8	8.3
	6H	7.2	7.5	7.6	7.9	8.3	7.1	7.5	7.6	7.9	8.3
	8H	7.2	7.4	7.6	7.9	8.3	7.1	7.4	7.5	7.8	8.2
	12H	7.2	7.4	7.6	7.8	8.3	7.1	7.3	7.5	7.8	8.2
вн	4H	7.1	7.4	7.5	7.8	8.2	7.2	7.4	7.6	7.9	8.3
	6H	7.1	7.3	7.5	7.7	8.2	7.1	7.3	7.6	7.8	8.3
	BH	7.1	7.3	7.5	7.7	8.2	7.1	7.3	7.5	7.7	8.2
	12H	7.1	7.3	7.6	7.8	8.3	7.0	7.2	7.5	7.7	8.2
12H	4H	7.1	7.3	7.5	7.8	8.2	7.2	7.4	7.6	7.8	8.3
	6H	7.0	7.2	7.5	7.7	8.2	7.1	7.3	7.6	7.8	8.3
	H8	7.0	7.2	7.5	7.7	8.2	7.1	7.3	7.6	7.8	8.3
Varia	itions wi	th the ol	bserverp	osition	at spacir	ng:					
S =	1.0H		6	.7 / -8	9	6.7 / -8.9					
	1.5H		9	.5 / -9	.1	9.5 / -9.1					